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Abstract

Cancer cell invasion of tissue is a complex biological process during
which cell migration through the extracellular matrix, facilitated by
the secretion of degradative enzymes, is a central process. Cells can
deform their cytoplasm to produce pseudopodia, anchor these pseu-
dopodia to neighbouring spatial locations in the tissue and detach
earlier bonds, to enable them to move and therefore migrate in a speci-
fied direction. Genetic mutations, chemoattractant gradients or a lack
of nutrients in their current location can stimulate cell motility and
cause them to migrate. When cancer cells migrate they degrade the
surrounding extracellular matrix, thereby invading new territory. In
this paper we propose a hybrid discrete-continuum two-scale model to
study the early growth of solid tumours and their ability to degrade
and migrate into the surrounding extracellular matrix. The cancer
cells are modelled as discrete individual entities which interact with
each other via a potential function, while the spatio-temporal dynam-
ics of the other variables in the model (extracellular matrix, matrix
degrading enzymes and degraded stroma) are governed by partial dif-
ferential equations.

Keywords: Cancer invasion; matrix degradation; hybrid model; discrete-
continuum
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1 Introduction

The formation of a tumour begins with failure in the replication of a cell’s
DNA which leads to the uncontrolled division of the cell. This initial fail-
ure in DNA replication occurs at a molecular level in the cell nucleus. The
result of such cellular instability are new daughter cells which interact with
the environment in a two-scale, physical-chemical framework. At the cellular
level, dynamics have in general a much longer space-scale and a slower time-
scale than events at the molecular level. For example, a reaction such as
the enzymatic degradation of a substrate can occur in milliseconds whereas
the replication of a cell can take about one day. This difference in space-
and time-scales is evident at the edge of a cancerous cell mass as it tries
to penetrate the extracellular matrix (ECM) and thereby invade surround-
ing territory or spread to other locations. At a molecular level cells need
to produce those reactions that facilitate their migration through the ECM,
a process which often involves the degradation of this matrix [1] [2]. The
pathways involved in tumour-growth can be classified as: intracellular, such
as the formation of actin filaments to produce pseudopodia; extracellular, for
example the reorganization of the collagen filaments of the ECM; and certain
others that connect intracellular dynamics with the extracellular stroma, for
instance the uptake of growth factors released from the remodelled ECM,
which promote cell mitosis [3]. From a cellular perspective, physical inter-
actions with the ECM are crucial in determining the nature of the tumour’s
invasion-front [4].

Invasion of surrounding tissue normally occurs after the tumour has reached
a certain size and the peripheral rim of cells has started to disaggregate. At
this point the cells on the tumour surface initiate different invasion mecha-
nisms including the fingering process, Indian lines, cluster detachment, etc.
All these processes are characterized by a loss of compactness at the tu-
mour surface and are the hallmarks of metastasis. This loss of compactness
differentiates malignant and benign tumours and seems to be a biological
process similar to the epithelial-mesenchymal transition in embryogenesis [5]
[6] where a well organized and bipolar layer of cells becomes more diffuse
and semidetached. In this transition, cell adhesion plays an important role
in maintaining the compactness of the tissue [7]. For a tumour to become
especially harmful and to invade distant organs in the body, a loss of com-
pactness is crucial. This dictates that cell-cell bonds must be able to detach.
In many tumours mutations related to the cells’ adhesive system have been
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found [8] [9]. These abnormalities are often related to other intracellular bi-
ological pathways that may promote further abilities related to invasion, e.g.
cell-cycle progression and increased cellular motility. For instance, the beta
catenin pathway is thought to be related to tumour invasion: Up-regulation
of beta-catenin in the cytoplasm is linked to a poor prognosis for cancer pa-
tients [10] [8]. This increased invasive ability can be associated with cell-cycle
progression or increased cellular motility but, in addition, the beta catenin
pathway is closely related to the intracellular domain of the E-cadherin adhe-
sive system [11]. Even if increased cell motility and proliferation contribute
greatly to the invasive ability of the tumour, in order for metastasis to occur
the detachment of intercellular bonds is necessary.

Cancer cells employ different methods of invasion both individually and
in combination to allow tumours to grow. Before a tumour becomes invasive,
the rough-nature of its surface is caused by variations in how groups of pe-
ripheral cells degrade the ECM they are in contact with. This degradation is
achieved by the tumour cells secreting matrix-degrading enzymes, mainly of
the type Matrix Metalloproteinases (MMPs) and Urokinase Plasminogen Ac-
tovators (uPAs). Cancer-induced degradation leads to the reorganization of
the protein network that forms the ECM and, in many cases, to the produc-
tion of chemicals that promote cell migration and proliferation. For instance,
certain ECM protein-complexes like vitronectin, fibronectin, laminin, type-I
collagen, type-IV collagen, and thrombospondin stimulate tumour cells into
migration. Both haptotaxis and chemotaxis are induced by different types
of degradation of these proteins [12] [13].

Modelling aspects of cancer growth has been approached using a wide
range of mathematical models [14] [15] [16] [17] [18]. Specific models of cancer
cell invasion have been both discrete, where cells are consider as individual
identities [4] [19], continuum using reaction diffusion equations [20] [21] [22]
[23] [24], or hybrid models [25] [26] [27], and have been used to explain the
diverse aspects of tumour growth dynamics. A good survey of mathematical
models of cancer growth and development can be found in the excellent book
[28], and an excellent survey of the range of mathematical and computational
modelling techniques used for biological problems on different scales can be
found in the book [29]. Even if some cellular automata approaches have
shown the irregularities of the cells’ invading front ([26] [30]), in general the
invasion process has not been deeply studied. Continuum models using PDEs
are usually too ”large” scale and are inappropriate when the problem focusses
on a relatively small number of individual cancer cells. This is a key issue in
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invasion since it is created by single cell-matrix interactions which lead the
tumour front to invade healthy tissue.

In this paper we propose a model for studying the interactions of cancer
cells with the ECM. To do this we set an in-silico experiment where we let
proliferate a cell on the surface of an imaginary petri dish filled with artificial
ECM, we solve the system numerically to show the qualitative behaviour
of invasion patterns and, in section 3, we simplify the system to 1 spatial
dimension, and give an analytical solution in Fourier series where we study
the matrix degradation by a single cell.

2 The Hybrid Model

Here we introduce a hybrid discrete-continuum model for studying patterns
of cancer invasion. We use a two-scale approach where intracellular pathways
are related to the cells’ extracellular interactions with the ECM.

The continuum part of the model describes the interaction of the chemi-
cals with the ECM whereas the individual-based part models the individual
cells. In order to capture the dynamics linking the intracellular and the ex-
tracellular environments, every cell can act as a source and a sink of specified
molecular components.

Cells are considered to be discrete particles that interact with each other
physically via a potential function and with the surrounding environment re-
acting to the contact with the ECM. We assume that the amount of molecules
interacting is large enough to use a continuum system of partial differential
equations to model the chemicals and the ECM (cf. [25] [26]).

2.1 Chemicals and the ECM

In our model we will assume that the invasion process is triggered by con-
tact between peripheral cancer cells and the ECM [1] [2] [3]. We use the
variable M to denote the ECM density. Cancer cells which are in contact
with the protein network of the ECM release MMPs which modify the ECM
by degrading it. We use the variable E to denote the concentration of these
matrix metalloproteinases. The resulting new configuration of the adjacent
stroma, denoted by the variable A, stimulates cells to migrate via chemotaxis
and haptotaxis. Once the ECM has been degraded, the new configuration
of its protein network can interact with the cells. This interaction results in
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mitosis, via the cells absorbing the growth factors present in the degraded
medium, as well as migration. Cell migration occurs because of the chemo-
tactic and haptotactic gradients that arise in the degraded ECM.

The equations that govern the enzymes’ interactions with the adjacent
stroma are

∂

∂t
E(x, t) = λN(x, t)M(x, t)

︸ ︷︷ ︸

1

+χe△E(x, t) − µeE(x, t), (1)

∂

∂t
M(x, t) = −βE(x, t)M(x, t),

∂

∂t
A(x, t) = γE(x, t)M(x, t) + χa△A(x, t) − µaA(x, t),

where x ≡ (x, y). E(x, t) is the concentration of MMPs/uPAs, M(x, t) is
the density of the ECM and A(x, t) represents the density of degraded ECM
in which cells can absorb growth factors. N(x, t) is the number of cells at
time t in a specified neighbourhood of x such that

N(x, t) =
i=N∑

i=1

IBǫ(x)(xi)

where IBǫ(x) is the Heavyside function

IBǫ(x) =

{

1 if xi ∈ Bǫ(x)

0 Otherwise

and Bǫ(x) is the ball of radius ǫ, centered at x. N is the total number of
cells in the tumour and xi is the position of the ith cell. The term ”1” in the
first PDE above describes the instantaneous local production of enzymes by
the cells. Definitions of the parameters in our equations are presented in the
table in the numerics section.

2.2 Modelling the Cells

To model the cells, we consider them to be free particles, existing in two-
dimensional space, that interact with one another. To describe cell-cell adhe-
sion, we introduced what are effectively adhesive bonds on the cells’ surfaces
by including a potential function (see Figure 1). In our model, two cells
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Figure 1: The potential function we use to model intercellular adhesion is
graphed in one- and two-dimensional space. The left-hand image shows the
interaction energy between two cells which are separated by a distance x
which is scaled relative to the radius of an average cancer cell vs the potential
energy y = V (x). The image on the right shows the interaction energy
between two cells located in a two-dimensional domain.

interact via the potential function if they are separated by a distance that is
less than ǫ, which is normalized to be approximately double the radius of an
average cancer cell.

2.2.1 Potential function

We take as potential energy in the bond between two cells at time t is given
by

V (xi, t) = IBǫ(xi)

(

1

d(xi, xj) + e∞
− he−(d(xi,xj)−

ǫ
2
)2

)

(2)

where d(xi, xj) is the distance between the two cells, h represents their
capacity to bond, e∞ is the maximum energy.
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In an analogous way, to represent the bonds connecting a set of cells, we
employ the function

V (xi, t) =
∑

xj∈Bǫ(xi)

1

d(xi, xj) + e∞
− he−(d(xi,xj)−

ǫ
2
)2 ,

where Bǫ(xi) is a neighbourhood centred on xi with a radius ǫ, the maximum
intercellular interaction distance.

2.2.2 Movement

In the absence of any kind of attractant or interaction with the extracellular
matrix, cells will move in the direction that minimizes the potential function
between them, i.e. their motion would solely be governed by

D = −▽ V (xi, t).

Because our potential function is only a means of determining the direc-
tion in which a cell will move, we specify that our cells move at a constant
speed rather than imposing more complicated rules of motion. Depending on
the energy involved, cells may move towards one another due to the atractive
forces generated by the bonds or towards an area offering more free space
due to the repulsive forces caused by the cell compression.

In terms of the cell interactions with the environment, when the ECM
is degraded and chemoattractant gradients have been established, cells will
respond by travelling up these gradients. We model this response using the
following chemotaxis equation [31] which biases the direction of the cells’
motion.

D =

direction driven by the potential
︷ ︸︸ ︷

∇(−V (x, t)) +

Direction driven by chemotactic gradient
︷ ︸︸ ︷

r∇A(x, t)

where r denotes the cells’ sensitivity to the chemoattractant.

2.2.3 Cell Mitosis

In our model cell mitosis can occur for two reasons. The first possibility
is uncontrolled cell-cycle progression due to an autocrine stimulus while the
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second results from cells interacting with growth factors released by the de-
graded ECM.

R(xi, t) is the mitosis rate of the ith cell at time t. It is a probability
function that depends on the interaction of cells with growth factors. At
each time step a cell will duplicate with probability

R(xi, t) = f(A(x, t)) + p0,

where

f(A(x, t)) =

(
τA(x, t)

τA(x, t) + 1

)

P.

At low values of degraded ECM, R(xi, t) → p0 which is the mitosis rate
of a cell experiencing only an autocrine stimulus. The function f(A(x, t))
models the mitosis probability resulting from the cells being externally stim-
ulated due to the absorbtion of growth factors from the medium. This func-
tion saturates at high values of A(x, t) where p0 +P is the maximum mitosis
probability allowed at each time step. This models the fact that, when cancer
cells experience high growth factor concentrations, receptors in the cell sur-
face saturate. The parameter τ is the instantaneous [growth factor]-[growth
factor receptor] reaction rate. If we examine the temporal derivative of f(x)

ḟ(x) =
τ

1 + τx
−

τ 2x

(1 + τx)2

we see that as x → 0 the derivative → τ and so we can consider τ to be the
instantaneous rate at which receptors bind to growth factors. Consequently,
the more growth factor receptors that are being stimulated, the higher the
probability of cell duplication up to the point at which the cell-surface re-
ceptors become saturated.

3 Mathematical Analysis

The dynamics of hybrid models are usually complex to study due to the in-
teractions of every single with its local neighbours and the underlying PDE
system. In this section we simplify the system and set a basic in-silico ex-
periment to study interactions of a single cell with the adjacent ECM. We
consider the analogous situation to place a single cell on the surface of a
petri dish with constant density of an artificial ECM. We do not include the
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process of migration or proliferation but we just approach the degradation
and diffusion of the degraded matrix. In this way we develop an analytical
solution in Fourier series which helps to understand how cells behave.

Our initial model

∂

∂t
E(x, t) = λN(x, t)M(x, t) + χe△E(x, t)

︸ ︷︷ ︸

2

−µeE(x, t), (3)

∂

∂t
M(x, t) = −βE(x, t)M(x, t),

∂

∂t
A(x, t) = γE(x, t)M(x, t) + χa△A(x, t) − µaA(x, t),

includes the minimal variables to describe the process of cell migration
through the ECM: matrix contact, matrix degradation and directed move-
ment. In particular, term 2 describes the diffusion of the enzymes in the
sourrounding environment of the cell. There exists evidence of how this ma-
trix degradation is confined to the contact zones of the cells with the matrix.
Rather than a diffusion effect, matrix degradation is a kind of cut off of
the fibers that impede cell migration[1]. Therefore enzyme dynamics can
be model using a slow diffusion as we do in our system or just allowing to
degrade the part of the matrix where the cells are in contact with. This two
approaches have similar dynamics. Then, in order to analyse our model we
can drop the first equation and consider the simpler system

∂

∂t
M(x, t) = −βM(x, t)N(x, t), (4)

∂

∂t
A(x, t) = γM(x, t)N(x, t) + χa△A(x, t) − µaA(x, t),

which is more suitable to make a mathematical analysis and it captures
the same biological interactions. For the simplest case we study the interac-
tions of one cell in one spatial dimension which interacts with the surrounding
matrix. In the appendix section we solve this system getting that the extra-
cellular matrix is ruled by

M(x, t) = e−βtI[xo−ǫ,xo+ǫ] + I[xo−ǫ,xo+ǫ],

and the degraded stroma

A(x, t) =
n=∞∑

n=1

[
2γcos(nπx

l
)|xo+ǫ

xo−ǫ(e
−βt − e−(χa(nπ

l
)2+µ)t)

nπ(χa(
nπ
l
)2 + µ − β)

sin(
nπx

l
)].
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Figure 2: Plot showing the evolution of the ECM density as it is degraded
by a single cell placed on a petri dish. The cell is centred at x = 5 with a
radius of size 2. The cell is not allow to move and therefore it only degrades
the part of the matrix is in contact with.

These equations show how a single cell degrades the ECM once it get in
contact with it and at the same time is producing a wave of chemoattractants,
and growth factors that diffuses in the adjacent space. Figure 2 shows the
degradation of ECM by a single cell and Figure 3 shows the spatio-temporal
evolution of attractant concentration profiles in the case of one and two cells
respectively.

4 Numerical Simulations

In order to perform our in-silico experiment we consider as initial conditions
what would be a very common in-vitro experiment: a single cell is placed
on the surface of a petri dish filled with artificial ECM. The initial density
of ECM is considered to be constant equal to 1. There is no enzyme on the
surface of the plate at the moment when the cell is placed and therefore there
is no degraded matrix in the system. For solving the PDE system we used
centered differences with appropriate time and space scales. Since the cellular
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Figure 3: Plots showing the concentration profile over time of chemoattrac-
tants and growth factors as they are released from the degraded ECM. Figure
at the left hand side shows the profile created by a single cell on the surface of
a petri dish. Figure at the right hand side shows the profiles for two nearby
cells.
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dynamics have in general a much longer space-scale and a slower time-scale
than events at the molecular level, we chose to use a 20 times slower time-step
for solving the molecular scale equations than the one used for the cellular
scale dynamics. As well we used smaller space dynamics compared to the
cell size (ǫ/4) for the PDE grid space step. Simulations were run for both
Dirichlet and Newmann conditions producing the same type of dynamics and
invasion patterns. The values of the parameters used in the computational
simulations are given in the following table:

Parameter Definition value
λ Production rate of enzymes by a single cell 0.5
χe Diffusion coefficient of the enzymes 0.01
µ Decay rate of the enzymes in the medium 0.05
β Digestion rate of the ECM 1
γ Production rate of attractants 0.5
χA Diffusion coefficient of the digested ECM 0.01
µA Decay rate of the digested ECM 0.01
p0 Autocrine mitosis rate 0.0315
P Maximum stimulated mitosis rate 0.04
τ Instantaneous 0.5

[growth factor]-[growth factor receptor]
reaction rate

Results from our simulations mirror biological reality. In Figure 4 we see
the tumour growing outwards as a result of the continual process of cell-line
formation and collapse which occurs at its periphery. Cells on the tumour’s
edge are in contact with the ECM and are responsible for its degradation.
As expected, mitosis occurs more rapidly when the cells are highly stimu-
lated by growth factors. Although we only model a small number of cells,
we still observe the characteristic linear morphology of the cells as they de-
grade the ECM at the tumour’s edge. In reality, degradation of the ECM is
almost exclusively confined to where cancer cells are in direct contact with
it. In Figure 5 we present the temporal evolution of the enzyme wave that
accompanies the tumour’s outward expansion.

We observe that enzyme concentration is highest in areas where cell-
ECM contact is highest. High enzyme concentrations, which cause maxi-
mum degradation of the ECM, in turn lead to a rise in the concentration of
attractants and growth factors that are released by the degraded ECM. The
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Figure 4: Plots of the spatio-temporal evolution of the cancer cells as they
invade the ECM. The tumour grows by extending finger-like cell-structures,
which are composed of a small number of cells, from its periphery into the
ECM. These fingers then recede and spread on to the tumour’s surface re-
sulting in its heterogeneous outwards expansion.

outward propagating wave of chemoattractants and growth factors at the
periphery of the tumour causes cells in this region to migrate outwards and
to proliferate. In Figure 6 we show the temporal evolution of the enzyme-
induced degradation of the ECM. The associated wave of growth factors and
chemoattractants is presented in Figure 7.

5 Conclusions and Discussion

In this paper we have presented a hybrid discrete-continuum mathematical
model for cancer invasion. Cancer cells are treated as individual entities, in-
teracting through a potential function which is an attempt to model adhesive
forces. The cancer cells proliferate, secrete matrix degrading enzymes and
then move in a directed manner in response to chemical and matrix gradi-
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Figure 5: Plots showing the spatio-temporal evolution of the matrix de-
grading enzyme concentration. Cancer cells in contact with the extracellu-
lar matrix release enzymes, mainly matrix metalloproteinases and urokinase
plasminogen activators, creating a wave of ECM-degrading chemicals that
precedes the growing tumour. Lighter zones correspond to areas of higher
cell density which are in contact with the matrix. The heterogeneity of the
enzyme wave front is caused by the heterogeneous morphology of the tu-
mour’s surface.
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Figure 6: plots showing the spatio-temporal evolution of the ECM density.
The extracellular matrix is degraded by the enzymes produced by the cancer
cells that are in contact with it. Therefore, degradation of the extracellular
matrix mirrors the tumour’s growth. The dark area represents the degraded
ECM.
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Figure 7: Plots of the spatio-temporal evolution of the degraded matrix
density. A wave of chemoattractants and growth factors (light areas represent
high concentrations) arises from the degraded extracellular matrix. This
leads cells to proliferate and migrate which, in turn, continues the stimulation
of enzyme production and the corresponding degradation of the ECM. As a
result, a migration feedback loop is established.
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ents. Our model highlights the importance of chemoattractant gradients in
the invasion process. The results of computational simulations of the model
are able to reproduce local invasion strategies of a small number of cancer
cells. This is in contrast with what continuum models can produce. This
process sees leading cells on the tumour’s edge boring tunnel-like channels
of degradation into the ECM. This is not only produced by the general ex-
pansive tumour growth of the whole cancer mass, but also by a combination
of proliferation and migration at the contact zone with the ECM. In these
degraded areas of the ECM, chemoattractant concentrations are high which
results in cells following the ”leaders” and forming invasion fingers which
extend from the tumour’s periphery. This suggests the importance of a pos-
sible feedback loop of degradation between the protein network and invasion
promotion.

Acknowledgments

The authors gratefully acknowledge the support by the European Commu-
nity, through the Marie Curie Research Training Network Project HPRN-CT-
2004-503661: Modelling, Mathematical Methods and Computer Simulation
of Tumour Growth and Therapy.

Appendix

Here we show the mathematical analysis done in order to find the solutions
of the 1 spatial dimension simplified system of section 3

∂

∂t
M(x, t) = −βM(x, t)N(x, t), (5)

∂

∂t
A(x, t) = γM(x, t)N(x, t) + χa△A(x, t) − µaA(x, t).

We consider the cell as an object centered at position xo and of radius ǫ.
Then N(x, t) is nothing but a Heaviside function I[xo−ǫ,xo+ǫ].
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Solution of equation (4) is of the form

M(x, t) = Ce−βtI[xo−ǫ,xo+ǫ] + g(x),

which for one cell and initial matrix density equals to 1 leads to

M(x, t) = (Ce−βt − (C + 1))I[xo−ǫ,xo+ǫ] + I[xo−ǫ,xo+ǫ],

where the bar denotes the complementary set. Since in absence of cells
on the petri dish the ECM density is 1 we can take without lost of generality
C = 1 and g(x) = 0.

Then we can look for solutions for the second equation of the simplified
system. For this we set firstly the problem with Dirichlet conditions:

∂

∂t
A(x, t) = γe−βtI[xo−ǫ,xo+ǫ] + χa△A(x, t) − µaA(x, t), (6)

A(x, 0) = h(x),

A(0, t) = 0,

A(l, t) = 0

where x ∈ [0, l] and t ∈ [0, T ].
The homogeneous associated problem can be solved using separation of

variables. The equality on time variable has solution of the form of a expo-
nential function in time dependent variable

T (t) = Cekt.

In our particular problem, at t = 0, when the cell is just placed on the surface
of the petri dish, the ECM it has not been degraded yet. Therefore h(x) = 0,
this leads to

T (0) = 0 = C

and then the solution for the homogeneous associated is the trivial solution
Ah(x, t) = 0.

For the non-homogeneous part of the system we look for solutions of the
form

A(x, t) =
∞∑

n=0

un(t)sin(
nπx

l
).
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In order to find the coefficients un(t), firstly, we expand the non-homogeneous
term in sin series

γe−βtI[xo−ǫ,xo+ǫ] =
∞∑

n=0

an(t)sin(
nπx

l
),

then

an(t) =
2

l

∫ l

0

γe−βtI[xo−ǫ,xo+ǫ]sin(
nπx

l
)dx

Which leads to

an(t) =
2γe−βtcos(nπx

l
)|xo+ǫ

xo−ǫ

nπ

Now we can substitute this fourier series in the equation (5) to get an ex-
pression involving all the coefficients

0 =
∞∑

n=0

[−
d

dt
un(t)+

2γe−βtcos(nπx
l

)|xo+ǫ
xo−ǫ

nπ
−χaun(t)(

nπ

l
)2−µaun(t)]sin(

nπx

l
).

Multiplying both sides by sin(nπx
l

) and using orthogonality we get the set of
ODEs that will determine the value of the coefficients

d
dt

un(t) =
2γcos(nπx

l
)|xo+ǫ

xo−ǫ

nπ
e−βt − χaun(t)(

nπ
l
)2 − µaun(t),

un(0) = hn,

where hn are the coefficients of the initial data

hn =
2

l

∫ l

0

h(x)sin(
nπx

l
)dx

Then rearranging and using as integrant factor e(χa(nπ
l

)2+µ)t we get the
following expression

d

dt
(une(χa(nπ

l
)2+µ)t) =

2γcos(nπx
l

)|xo+ǫ
xo−ǫ

nπ
e(χa(nπ

l
)2+µ−β)t

which leads to the solution

un =
2γcos(nπx

l
)|xo+ǫ

xo−ǫ

nπ
(

e−βt

χa(
nπ
l
)2 + µ − β

− Ke−(χa(nπ
l

)2+µ)t)

where K is a constant to be determined.
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If we consider the cell has been just placed on the surface of a flat petri
dish with initial concentration of ECM equal to 1 and no degraded ECM,
we have h(x) = 0 and therefore un(0) = 0. For this initial setup of the
experiment we get

un =
2γcos(nπx

l
)|xo+ǫ

xo−ǫ(e
−βt − e−(χa(nπ

l
)2+µ)t)

nπ(χa(
nπ
l
)2 + µ − β)

.

Observe that the general solution of the homogeneous system vanishes for
A(x, 0) = h(x) = 0. Therefore, the general solution of the non-homogeneous
system is

A(x, t) =
n=∞∑

n=1

[
2γcos(nπx

l
)|xo+ǫ

xo−ǫ(e
−βt − e−(χa(nπ

l
)2+µ)t)

nπ(χa(
nπ
l
)2 + µ − β)

sin(
nπx

l
)].
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